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Abstract The effect of melting heat transfer on the two dimensional boundary layer
flow of a micropolar fluid near a stagnation point embedded in a porous medium in the
presence of internal heat generation/absorption is investigated. The governing non-linear
partial differential equations describing the problem are reduced to a system of non-
linear ordinary differential equations using similarity transformations solved numerically
using the Chebyshev spectral method. Numerical results for velocity, angular velocity and
temperature profiles are shown graphically and discussed for different values of the inverse
Darcy number, the heat generation/absorption parameter, and the melting parameter.
The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple
stress, and the local Nusselt number are tabulated and discussed. The results show that
the inverse Darcy number has the effect of enhancing both velocity and temperature
and suppressing angular velocity. It is also found that the local skin-friction coefficient
decreases, while the local Nusselt number increases as the melting parameter increases.
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Nomenclature

cp, specific heat at constant pressure;
cs, heat capacity of solid surface;
Cfx , local skin-friction coefficient;
D−1

a , permeability parameter;
f ′, dimensionless velocity;
G, micro-rotation parameter;
G1, micro-rotation constant;
h, dimensionless microrotation;
k, gyro-viscosity;
K, material parameter;
k1, permeability;

M, melting parameter;
Mx, dimensionless wall couple stress;
m0, boundary parameter;
mw, wall couple stress;
N, dimensional component of microrotation

vector normal to x-y plane;
Nux, local Nusselt number;
Pr, Prandtl number;
Q0, heat generation or absorption constant;
qw, heat transfer from plate;
Rex, local Reynolds number;
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T, fluid temperature;
T0, solid temperature;
u, v, dimensional components of velocities

along and perpendicular to plate, respec-
tively;

Tm, temperature of melting surface;
T∞, free stream condition;
x, y, dimensional distances along and perpen-

dicular to plate, respectively.

Greek symbols

α, thermal diffusivity;
γ, heat generation or absorption parame-

ter;
θ, dimensionless temperature;
κ, thermal conductivity;

λ, latent heat fluid;
µ, dynamic viscosity;
ρ, fluid density;
τw, surface shear stress.

Subscripts

′, differentiation with respect to η.

1 Introduction

The structure of the flow near a stagnation-point is a fundamental topic in fluid dynamics,
and it has attracted the attention of many researchers during the past several decades because
of its wide industrial and technical applications, such as heat exchangers placed in a low-velocity
environment, cooling of nuclear reactors during emergency shutdown, solar central receivers ex-
posed to wind currents, cooling of electronic devices by fans, and many hydrodynamic processes.
Hiemenz[1] and Homann[2] initiated the study of two dimensional and axisymmetric three di-
mensional stagnation point flows, respectively. Eckert[3] extended Hiemenz’s work by including
the energy equation and obtained an exact similarity solution for the thermal field. Later, the
problem of stagnation point flow was extended numerically by Schlichting and Bussmann[4] and
analytically by Ariel[5] to include the effect of suction.

In recent years, the dynamics of micropolar fluids has become a popular area of research.
The analysis of physical problems in these fluids has revealed several interesting phenomena,
which are not found in Newtonian fluids, such as the extrusion of polymer fluids, solidification of
liquid crystals, cooling of a metallic plate in a bath, animal bloods, fluids with additives, exotic
lubricants, and colloidal, suspension solutions, and many other situations. Eringen[6–7] was the
first to propose the theory of micropolar fluids, in which the microscopic effects arising from
the local structure and micromotions of the fluid elements are taken into account. Extensive
reviews of this theory and its applications can be found in Refs. [8] and [9].

Many attempts were made to find analytical and numerical solutions by applying certain
special conditions and using different mathematical approaches. Willson[10] used the Karman-
Polhausen approximate integral method to study the micropolar boundary-layer flow near a
stagnation point. Peddieson and McNitt[11] numerically studied the boundary-layer flow at
a stagnation point under steady-state conditions using a finite difference scheme. A set of
boundary layer equations for two dimensional flow of an incompressible micropolar fluid near
a stagnation point was done by Bhargava and Rani[12]. Ramachandran and Mathur[13] studied
the heat transfer in the stagnation point flow of a micropolar fluid. Heat transfer from non-
isothermal surfaces in the stagnation-point flow of a micropolar fluid was studied by Unsworth
and Chiam[14]. Nazar et al.[15] analyzed the steady stagnation flow towards a permeable vertical
surface immersed in a micropolar fluid.

The porous media heat transfer problems have numerous thermal engineering applications
such as geothermal energy recovery, crude oil extraction, thermal insulation, ground water
pollution, thermal energy storage, and flow through filtering devices. Extensive reviews on
this topic were provided in most recent books[16–18]. Recently, Gupta and Sharma[19] studied
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the thermal instability of a micropolar fluid through a porous medium that has a constant
thickness. The steady boundary layer flow of a micropolar fluid through a porous medium by
using the generalized Darcys law was examined by Raptis[20].

The melting process is encountered in a wide range of technologies, such as metal casting,
laser manufacturing (drilling, welding, and selective sintering), seasonal freezing and melting
of soil, lakes and rivers, and thermal energy storage. Epstein and Cho[21] studied melting heat
transfer from a flat plate in a steady laminar case, while Kazmierezack et al.[22–23] considered
melting from a vertical flat plate embedded in a porous medium in both natural and forced
convection modes.

Cheng and Lin[24–25] examined melting effect on mixed convective heat transfer from a
porous vertical plate in a liquid-saturated porous medium with aiding and opposing external
flows. Carslaw and Jaeger[26] discussed melting of a semi-infinite body with constant thermo-
physical properties and obtained an analytical solution for Dirichlet boundary conditions. Raisi
and Rostaml[27] investigated numerically the temperature distribution and melt pool size in a
semi-infinite body due to a moving Laser heat source. Kearns and Plumb[28] experimentally
studied direct contact melting of a packed bed. The magnetic and buoyancy effects on melting
processes about a vertical wall embedded in a saturated porous medium were investigated by
Tashtoush[29]. Very recently, Ishak et al.[30] studied the steady laminar boundary layer flow
and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel to a
constant free stream. Moreover, the melting heat transfer in boundary layer stagnation-point
flow towards a stretching (shrinking) sheet problem was studied by Bachok et al.[31].

Motivated by all these works, we contemplate to study the melting effects on flow and
heat transfer of a micropolar fluid near stagnation point embedded in a porous medium in the
presence of internal heat generation (absorption).

2 Formulation of problem

Consider stagnation point flow of an incompressible micropolar fluid towards a horizontal
plate embedded in a porous medium. It is assumed that the plate constitutes the interface
between the liquid phase and the solid phase during melting inside the porous matrix at the
steady state. The coordinate system and flow model are shown in Fig. 1. The x-axis is directed
along the plate and the y-axis is normal to it. It is assumed that the velocity of the external flow
is U(x) = ax, where a is a positive constant, and x measures the distance from the leading edge
along the surface of the plate. The plate is at constant temperature Tm at which the material
of the porous matrix melts (the liquid phase temperature is T∞ (> Tm) and the temperature of
the solid far from the interface is T0 (< Tm)). The flow is steady, laminar, and two-dimensional.

Under the usual boundary-layer approximations, the basic equations taking into account the
presence of internal heat generation (absorption) in the energy equation for a micropolar fluid
can be written as follows[32]:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+

(µ+ k

ρ

)∂2u

∂y2
+
k

ρ

∂N

∂y
−

µ

ρk1
(u − U), (2)

G1
∂2N

∂y2
−

(

2N +
∂u

∂y

)

= 0, (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
q′′′

ρcp
, (4)

where u and v are the velocity components in the x- and y-directions, respectively. N is the
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Fig. 1 Flow model and coordinate system

component of the micro-rotation vector normal to the xy-plane, T is the fluid temperature,
µ is the dynamic viscosity, k is the gyro-viscosity (or vortex viscosity), ρ is the fluid density,

k1 is the permeability of the porous medium, G1 = γ∗

k is the microrotation constant, α is the
thermal diffusivity of the fluid, and cp is the specific heat at constant pressure.

Following Epstein and Cho[21], we assume that the boundary conditions are as follows:










u = 0, N = −m0
∂u

∂y
, T = Tm at y = 0,

u→ U(x), N → 0, T → T∞ as y → ∞,

(5)

and

κ
(∂T

∂y

)

y=0
= ρ(λ+ cs(Tm − T0))v(x, 0), (6)

where m0 (0 6 m0 6 1) is the boundary parameter. When the boundary parameter m0 = 0,
we obtain N = 0 which is the no-spin condition, i.e., the microelements in a concentrated
particle flow close to the wall are not able to rotate (as stipulated by Jena and Mathur[33]).
The case m0 = 1/2, represents the weak concentration of microelements. The case correspond-
ing to m0 = 1 is used for the modelling of turbulent boundary layer flow (see Peddison and
McNitt[11]). In (6), κ is the thermal conductivity, λ is the latent heat fluid, and cs is the heat
capacity of the solid surface. (6) states that the heat conducted to the melting surface is equal
to the heat of melting plus the sensible heat required to raise the solid temperature T0 to its
melting temperature Tm (see Epstein and Cho[21] and Bachok et al.[31]). In order to get a sim-
ilarity solution, the dependence of the internal heat generation (absorption) rate of the space
coordinate can be taken in the form[34]:

q′′′ = Q0e
−η, (7)

where Q0 is the heat generation or absorption constant.
We introduce the following dimensionless variables:



























η =
(a

ν

)1/2

y, N = ax
(a

ν

)1/2

h(η),

u = axf ′(η), v = −(aν)1/2f,

θ(η) =
T − Tm

T∞ − Tm
.

(8)
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Through (8), the continuity equation (1) is automatically satisfied. From (2)–(4), we can
get

(1 +K)f ′′′ + ff ′′
− f ′2 +Kh′ +D−1

a (1 − f ′) + 1 = 0, (9)

Gh′′ − (2h+ f ′′) = 0, (10)

1

Pr
θ′′ + fθ′ + γe−η = 0. (11)

The transformed boundary conditions are then given as follows:















f ′ = 0, P rf +Mθ′ = 0,

h = −m0f
′′, θ = 0 at η = 0,

f ′
→ 1, h→ 0, θ → 1 as η → ∞,

(12)

where primes denote differentiation with respect to η,

K =
k

µ
, D−1

a =
ν

ak1
, G = G1a/ν,

Pr = µcp/κ, γ =
Q0

aρcp(T∞ − Tm)
.

Here, γ is the heat generation (γ > 0) or absorption (γ < 0) parameter, and M is the dimen-
sionless melting parameter which is defined as

M =
cp(T∞ − Tm)

λ+ cs(Tm − T0)
. (13)

The melting parameter is a combination of the two Stefan numbers cf(T∞ − Tm)/λ and
cs(Tm − T0)/λ for the liquid and solid phases, respectively.

The physical quantities of interest are the local skin-friction coefficient Cfx
, the dimensionless

wall couple stress Mx and the local Nusselt number Nux, which are defined as follows:































Cfx
=

2τw
ρU2

,

Mx =
mw

ρaνU(x)x2
,

Nux =
xqw

κ(T∞ − Tm)
,

(14)

where the surface shear stress τw, the wall couple stress mw, and the heat transfer from the
plate qw are defined by































τw =
(

(µ+K)
∂u

∂y
+KN

)

y=0
,

mw = γ∗
(∂N

∂y

)

y=0
,

qw = −

(

κ
∂T

∂y

)

y=0
.

(15)
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Using the similarity variables (13), we get























1

2
Cfx

Re1/2
x = (1 +K(1 −m0))f

′′(0),

MxRex = KGh′(0),

NuxRe
−1/2
x = −θ′(0),

(16)

where Rex

(

= U(x)x
ν

)

is the local Reynolds number.

3 Method of solution

The governing boundary layer equations (9)–(12) have the domain 0 6 η 6 η∞, where η∞
is one end of the user specified computational domain. Using the algebraic mapping

χ = 2
η

η∞
− 1,

the unbounded region [0,∞) is mapped into the finite domain [1,−1], and the problem expressed
by equations (9)–(12) is transformed to the following system:

(1 +K)f ′′′(χ) +
(η∞

2

)

(f(χ)f ′′(χ) − f ′2(χ))

+
(η∞

2

)2(

Kh′(χ) −D−1
a

((η∞
2

)

− f ′(χ)
))

+
(η∞

2

)3

= 0, (17)

Gh′′(χ) −
(

2
(η∞

2

)2

h(χ) + f ′′(χ)
)

= 0, (18)

1

Pr
θ′′(χ) +

(η∞
2

)

f(χ)θ′(χ) +
(η∞

2

)2

γe−( η∞

2
)(1+χ) = 0. (19)

The transformed boundary conditions are given as follows:



















































Prf(−1) +M
( 2

η∞

)

θ′(−1) = 0,

f ′(−1) = 0, f ′(1) =
(η∞

2

)

,

h(−1) = −m0

( 2

η∞

)2

f ′′(−1), h(1) = 0,

θ(−1) = 0, θ(1) = 1.

(20)

Our technique is accomplished by starting with a Chebyshev approximation for the highest
order derivatives, f ′′′, h′′, and θ′′ and generating approximations to the lower order derivatives
f ′′, f ′, f , h′, h, θ′ and θ as follows.

Setting

f ′′′ = φ(χ), h′′ = ψ(χ), θ′′ = ζ(χ),
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then by integration, we obtain

f ′′(χ) =

∫ χ

−1

φ(χ)dχ + Cf
1 , (21)

f ′(χ) =

∫ χ

−1

∫ χ

−1

φ(χ)dχdχ + Cf
1 (χ+ 1) + Cf

2 , (22)

f(χ) =

∫ χ

−1

∫ χ

−1

∫ χ

−1

φ(χ)dχdχdχ + Cf
1

(χ+ 1)2

2
+ Cf

2 (χ+ 1) + Cf
3 , (23)

h′(χ) =

∫ χ

−1

ψ(χ)dχ + Ch
1 , (24)

h(χ) =

∫ χ

−1

∫ χ

−1

ψ(χ)dχdχ+ Ch
1 (χ+ 1) + Ch

2 , (25)

θ′(χ) =

∫ χ

−1

ζ(χ)dχ+ Cθ
1 , (26)

θ(χ) =

∫ χ

−1

∫ χ

−1

ζ(χ)dχdχ+ Cθ
1 (χ+ 1) + Cθ

2 . (27)

From the boundary condition (20), we obtain

Cf
1 =

1

2

(η∞
2

)

−

1

2

∫ 1

−1

∫ χ

−1

φ(χ)dχdχ,

Cf
2 = 0,

Cf
3 =

M

2Pr

( 2

η∞

)

∫ 1

−1

∫ χ

−1

ζ(χ)dχdχ −

M

2Pr

( 2

η∞

)

,

Ch
1 = −

1

2

∫ 1

−1

∫ χ

−1

ψ(χ)dχ −

1

2
Ch

2 ,

Ch
2 =

m0

2

( 2

η∞

)2
∫ 1

−1

∫ χ

−1

φ(χ)dχdχ −

m0

2

( 2

η∞

)

,

Cθ
1 = −

1

2

∫ 1

−1

∫ χ

−1

ζ(χ)dχdχ +
1

2
,

Cθ
2 = 0.

Therefore, we can give approximations to (21)–(27) as follows:































fi(χ) =
n
∑

j=0

lfijφj + df
i ,

f ′

i(χ) =
n
∑

j=0

lf1
ij φj + df1

i ,

f ′′

i(χ) =
n
∑

j=0

lf2
ij φj + df2

i ,

(28)
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hi(χ) =
n
∑

j=0

lθijψj +
n
∑

j=0

lhijφj + dh
i ,

h′i(χ) =
n
∑

j=0

lθ1
ij ψj +

n
∑

j=0

lh1
ij φj + dh1

i ,
(29)















θi(χ) =
n
∑

j=0

lθijζj + dθ
i ,

θ′i(χ) =
n
∑

j=0

lθ1
ij ζj + dθ1

i

(30)

for all i = 0, · · · , n, where

lθij = b2ij −
(χi + 1)

2
b2nj, dθ

i =
(χi + 1)

2
,

lθ1
ij = bij −

1

2
b2nj , dθ1

i =
1

2
,

lhij =
m0

2

( 2

η∞

)2(

1 −

(χi + 1)

2

)

b2nj , dh
i =

m0

2

( 2

η∞

)( (χi + 1)

2
− 1

)

,

lh1
ij = −

m0

4

( 2

η∞

)2

b2nj , dh1
i =

m0

4

( 2

η∞

)

,

lfij = b3ij −
(χi + 1)2

4
b2nj , lfij =

M

2Pr

( 2

η∞

)

b2nj , df
i =

(χi + 1)2

4

(η∞
2

)

−

M

2Pr

( 2

η∞

)

,

lf1
ij = b2ij −

(χi + 1)

2
b2nj , lf1

ij = 0, df1
i =

(χi + 1)

2

(η∞
2

)

,

lf2
ij = bij −

1

2
b2nj , lf2

ij = 0, df2
i =

1

2

(η∞
2

)

,

where χi = − cos( iπ
n ) are the Chebyshev points.

b2ij = (χi − χj)bij ,

and bij are the elements of the matrix B, as given in Ref. [35].
By using (28)–(30), one can transform (17)–(19) to the following system of nonlinear equa-

tions in the highest derivatives into the following Chebyshev spectral equations:

(1 +K)φi +
(η∞

2

)((

n
∑

j=0

lfijφj +

n
∑

j=0

lfijζj + df
i

)(

n
∑

j=0

lf2
ij φj +

n
∑

j=0

lf2
ij ζj + df2

i

)

−

(

n
∑

j=0

lf1
ij φj +

n
∑

j=0

lf1
ij ζj + df1

i

)2)

+
(η∞

2

)2(

K
(

n
∑

j=0

lθ1
ij ψj +

n
∑

j=0

lh1
ij φj + dh1

i

)

+D−1
a

((η∞
2

)

−

(

n
∑

j=0

lf1
ij φj +

n
∑

j=0

lf1
ij ζj + df1

i

)))

+
(η∞

2

)3

= 0, (31)

Gψi −

(

2
(η∞

2

)2( n
∑

j=0

lθijψj +
n

∑

j=0

lhijφj + dh
i

)

+
(

n
∑

j=0

lf2
ij φj +

n
∑

j=0

lf2
ij ζj + df2

i

))

= 0, (32)

1

Pr
ζi +

(η∞
2

)(

n
∑

j=0

lfijφj +

n
∑

j=0

lfijζj + df
i

)(

n
∑

j=0

lθ1
ij ζj + dθ1

i

)

+
(η∞

2

)2

γe−( η∞

2
)(1+χi) = 0. (33)
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This system is then solved using Newton’s iteration method with n = 11; the computer
program is executed in Mathematica 4 running on a PC.

4 Results and discussion

In order to assess the accuracy of the present numerical method, we compare our numerical
results obtained for f ′′(0) with those reported by Hiemenz[1] and Bachok et al.[31] and for θ′(0)
with those reported by Yacob et al.[36] for parameters, K = 0, D−1

a = 0, and γ = 0 in (9) and
(11), and for various values of M . The results show a good agreements, as seen in Table 1 and
Table 2.

The effects of the various parameters such as the inverse Darcy number, the melting param-
eter, and the heat generation (absorption) parameter on the velocity, the angular velocity, and
the temperature profiles are shown in Figs. 2–10.

Table 1 Comparison between present numerical results and results given by Hiemenz[1] and Bachok

et al.[31] of f ′′(0) for various values of M with K = 0, D−1
a = 0, and γ = 0

M Hiemenz[1] Bachok et al.[31] Present work

0 1.232 600 1.232 587 1.232 600

1 − 1.037 003 1.036 997

2 − 0.946 850 0.946 849

3 − 0.891 381 0.891 363

Table 2 Comparison between present numerical results and results given by Yacob et al.[36] of θ′(0)
for various values of M with K = 0, D−1

a = 0, and γ = 0

M Yacob et al.[36] Present work

0 0.570 465 0.570 464 5

1 0.361 961 0.361 960 9

Fig. 2 Velocity profiles for various values of
D−1

a with G = 2, K = 1.2, Pr = 1,
m0 = 0.5, and Q = 0.1

Fig. 3 Angular velocity profiles for various
values of D−1

a with G = 2, K = 1.2,
M = 2, Pr = 1, m0 = 0.5, and
Q = 0.1
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Fig. 4 Temperature profiles for various values
of D−1

a with G = 2, K = 1.2, M = 2,
Pr = 1, m0 = 0.5, and Q = 0.1

Fig. 5 Velocity profiles for various values of
M with G = 2, K = 1.2, D−1

a = 0.1,
Pr = 1, m0 = 0.5, and Q = 0.1

Fig. 6 Angular velocity profiles for various
values of M with G = 2, K = 1.2,
D−1

a = 0.1 Pr = 1, m0 = 0.5, and
Q = 0.1

Fig. 7 Temperature profiles for various values
of M with G = 2, K = 1.2, D−1

a = 0.1,
Pr = 1, m0 = 0.5, and Q = 0.1

Figure 2 presents the effect of the inverse Darcy number D−1
a on f ′. We notice that f ′

increases with the increase of D−1
a . This is due to increasing the inverse Darcy number means

an increase of the porosity of the medium. For increasing porosity, the space allowing fluid to
move in a porous medium becomes large. Consequently, the fluid velocity increases. Figure 3
displays the influence of D−1

a on the angular velocity. It is obvious that initially h decreases by
increasing D−1

a near the surface and the reverse is true away from the surface. It is noticed that
large values of Da correspond to high porosity of the porous medium, and the limit Da → ∞

corresponds to the case of absence of the porous medium. The presence of porous medium causes
higher retardation to the fluid, which reduces the velocity. Figure 4 illustrates the effects of
D−1

a on the temperature profiles θ. It is observed that θ increases with the increase of D−1
a .

Figure 5 shows the variation of f ′(η) with η for various values of the melting parameter M . It
can be seen that f ′ decreases with the increase of M . This is in agreement with the fact that
more intense melting (increasing M) tends to thicken the boundary layer. The angular velocity
profiles for different values of M are illustrated in Fig. 6, which shows that h increases with the
increase of M near the surface and the reverse is true at large distances from the surface. It
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Fig. 8 Velocity profiles for various values of
γ with G = 2, K = 1.2, D−1

a = 0.1,
Pr = 1, m0 = 0.5, and M = 2

Fig. 9 Angular velocity profiles for various
values of γ with G = 2, K = 1.2,
D−1

a = 0.1, Pr = 1, m0 = 0.5, and
M = 2

Fig. 10 Temperature profiles for various values of γ with G = 2, K = 1.2, D−1
a = 0.1, Pr = 1,

m0 = 0.5, and M = 2

can be noticed that the temperature profiles decrease as M increases as illustrated in Fig. 7.
Physically, increasing the melting parameter causes higher acceleration to the fluid flow which,
in turn, increases its motion and causes decrease in the temperature profiles. The effects of the
the heat generation parameter (γ > 0) and the absorption parameter (γ < 0) on the velocity,
the angular velocity and the temperature are displayed in Figs. 8, 9, and 10, respectively. It is
seen from Fig. 8 that f ′ decreases as the heat generation parameter (γ > 0) increases, but the
effect of the absolute value of the heat absorption parameter (γ < 0) is opposite. In Fig. 9, it
is shown that h increases as the heat generation parameter increases, while h decreases as the
absolute value of the heat absorption parameter increases near the surface and the opposite is
true away from it. Figure 10 displays the effect of the heat generation (absorption) parameter
on the temperature profiles θ. It is found that as the heat generation parameter increases θ
increases near the surface and the reverse is true away from the surface, while the effect of the
absolute value of the absorption parameter is opposite.

Table 3 illustrates the effects of D−1
a , M , and γ on the local skin-friction coefficient in

terms of f ′′(0), the dimensionless wall couple stress in terms of h′(0), and the local Nusselt
number in terms of −θ′(0). From this Table, it is observed that the local skin-friction coefficient
and the dimensionless wall couple stress increase with increasing D−1

a , but the local Nusselt
number decreases with increasing D−1

a . Moreover, it is also found that, increasing M leads to
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a decrease in the local skin-friction coefficient and the dimensionless wall couple stress, while
the local Nusselt number increases as M increases. This is because increasing the melting
parameter M increases the thermal boundary layer thickness which results in a reduction in
temperature gradient at the surface. Finally, we can see that the local skin-friction coefficient,
the dimensionless wall couple stress and the local Nusselt number decrease with increasing the
heat generation parameter, but the reverse is true for the absolute values of the heat absorption
parameter.

Table 3 Values of f ′′(0), h′(0), and θ′(0) with m0 = 0.5, K = 1.2, G = 2, and Pr = 1

D−1
a M γ f ′′(0) h′(0) θ′(0)

0.1 2 0.1 0.794 517 0.155 405 0.293 257

0.3 2 0.1 0.849 944 0.175 904 0.296 545

0.8 2 0.1 0.975 463 0.223 595 0.303 364

1.5 2 0.1 1.128 810 0.283 946 0.310 690

0.1 0 0.1 0.971 549 0.219 799 0.604 407

0.1 1 0.1 0.852 142 0.175 850 0.385 372

0.1 2 0.1 0.794 517 0.155 405 0.293 257

0.1 3 0.1 0.757 662 0.142 633 0.240 549

0.1 2 0.8 0.688 602 0.119 424 0.495 754

0.1 2 0.4 0.746 486 0.138 810 0.381 880

0.1 2 0 0.811 384 0.161 332 0.263 217

0.1 2 −0.4 0.882 944 0.186 995 0.141 137

0.1 2 −0.8 0.960 621 0.215 698 0.016 891

5 Conclusions

The problem of steady two-dimensional flow of a micropolar fluid at stagnation point em-
bedded in a porous medium with melting heat transfer and in the presence of internal heat
generation (absorption) has been investigated. Using similarity transformations, the governing
equations are transformed into a system of coupled non-linear ordinary differential equations
which is solved numerically by using the Chebyshev spectral method. The results show that the
numerical values of the local skin-friction coefficient and the dimensionless wall couple stress
increase as the inverse Darcy number increases, while it decreases as the melting parameter
increases. The local Nusselt number decreases with increasing the inverse Darcy number, while
the melting parameter leads to an increase in the local Nusselt number. Also, it can be found
that the local skin-friction coefficient, the dimensionless wall couple stress and the local Nusselt
number decrease with increasing of the heat generation parameter, but the opposite is true for
the absolute values of the heat absorption parameter.
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